先贴题目:
A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line "Yes" if N is a reversible prime with radix D, or "No" if not.
Sample Input:
73 1023 223 10-2
Sample Output:
YesYesNo 题解:本题意思是判断一个数和该数在规定进制条件下反转后是否为素数。题目本身比较简单,但是一定要理解题意(我一开始就理解错题意) 关键是求该数在规定进制反转后在转为十进制后的数是否为素数。举个例子: 23 2 这组答案,23在10进制下是个素数,转化为二进制为10111.反转后为11101,再转为10进制为39,也是个质数。所以输出Yes 题目思路: 首先需要判断某个数是否为素数的函数(注意二为素数) 其次将这个数按照位数反转即可。 代码如下:
1 #include2 #include 3 using namespace std; 4 int convert(int n,int r); 5 int convert_todicimal(int n,int r); 6 bool judge(int n) 7 { 8 int i; 9 if(n<=1)10 return false;11 if(n==2||n==3)12 return true;13 for(i=2;i<=sqrt(n)+1;i++)14 {15 if(n%i==0)16 {17 return false;18 }19 }20 return true;21 }22 int reverse(int n,int r)//十进制数倒置23 {24 int result=0;25 int temp=0;26 while(n!=0)27 {28 int t=n%r;29 result=(result*r)+t;30 n=n/r;31 }32 return result;33 }34 35 int main() {36 int n,r;37 while(1)38 {39 scanf("%d%d",&n,&r);40 if(n<0)41 break;42 //printf("%d\n",convert(n,r));43 //printf("%d\n",reverse(n,r));44 if(judge(n)&&judge(reverse(n,r)))45 {46 printf("Yes\n");47 }48 else49 {50 printf("No\n");51 }52 }53 return 0;54 }